Optimal Threshold Computing in Automatic Image Thresholding using Adaptive Particle Swarm Optimization

نویسندگان

  • P. Moallem
  • N. Razmjooy
چکیده

Selecting an optimal threshold value is the most important step in image thresholding algorithms. For a bimodal histogram which can be modeled as a mixture of two Gaussian density functions, estimating these densities in practice is not simply feasible. The objective of this paper is to use adaptive particle swarm optimization (APSO) for the suboptimal estimation of the means and variances of these two Gaussian density functions; then, the computation of the optimal threshold value is straightforward. The comparisons of experimental results in a wide range of complex bimodal images show that this proposed thresholding algorithm presents higher correct detection rate of object and background in comparison to the other methods including Otsu’s method and estimating the parameters of Gaussian density functions using genetic algorithm (GA). Meanwhile, the proposed thresholding method needs lower execution time than the PSO-based method, while it shows a little higher correct detection rate of object and background, with lower false acceptance rate and false rejection rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Entropy Based MR Image Segmentation Using Particle Swarm Optimization

An image segmentation technique based on fuzzy entropy is applied for MR brain images to detect a brain tumor is presented in this paper. The proposed method performs image segmentation based on adaptive thresholding of the input MR images. The image is classified into two membership functions, whose member functions of the fuzzy region are Z-function and S-function. The optimal parameters of t...

متن کامل

Multilevel minimum cross entropy threshold selection based on particle swarm optimization

Thresholding is one of the popular and fundamental techniques for conducting image segmentation. Many thresholding techniques have been proposed in the literature. Among them, the minimum cross entropy thresholding (MCET) have been widely adopted. Although the MCET method is effective in the bilevel thresholding case, it could be very time-consuming in the multilevel thresholding scenario for m...

متن کامل

A Type II Fuzzy Entropy Based Multi-Level Image Thresholding Using Adaptive Plant Propagation Algorithm

One of the most straightforward, direct and efficient approaches to Image Segmentation is Image Thresholding. Multi-level Image Thresholding is an essential viewpoint in many image processing and Pattern Recognition based real-time applications which can effectively and efficiently classify the pixels into various groups denoting multiple regions in an Image. Thresholding based Image Segmentati...

متن کامل

A Multilevel Image Thresholding Using Particle Swarm Optimization

Abstract— Image Thresholding is one simplest method of image segmentation, which partitions the image into several objects on the basis of one or more threshold values. Threshold values are the values chosen from the intensity values of the image. In this paper, 8-bit unsigned gray scale images are taken as sample where the intensity values ranges from 0 to 255. Here Kapur's entropy criterion m...

متن کامل

PSO-Based Tsallis Thresholding Selection Procedure for Image Segmentation

Multilevel thresholding is a method that is widely used in image segmentation. The thresholding problem is treated as an optimization problem with an objective function. In this article, a simple and histogram based approach is presented for multilevel thresholding in image segmentation. The proposed method combines Tsallis objective function and Particle Swarm Optimization (PSO). The PSO algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012